

Bipolar Neutralization using Radioactive, X-ray, and AC Corona Methods

Jacob Swanson, Jean de La Verpillière, and Adam Boies University of Cambridge

js2011@cam.ac.uk

Outline

Motivation

- Background charge fraction
- Experimental charging conditions
 - Neutralizers
 - Carrier gas

• Results

- Size distributions
- Ion mobility
- Charged fraction
- Summary and conclusions

Motivation – particle size distribution measurements

Motivation – particle size distribution measurements

Objectives and methodology

- Objective: determine sources of uncertainty in the charge-toconcentration inversion required for size distribution measurement
- Measure charging characteristics in diverse systems using different neutralization techniques
 - Particle charging (+1 fraction) depends on ion mobility and mass
 - Ion mobility and mass depends on carrier gas properties
 - Quantify experimentally
 - Particle size distributions
 - o lon distributions
 - o Particle charge
 - Calculate sensitivity (Fuchs' theory)

Outline

Motivation

- Background charge fraction
- Experimental charging conditions
 - Neutralizers
 - Carrier gas

• Results

- Size distributions
- Ion mobility
- Charged fraction
- Summary and conclusions

+1 fraction – stationary charge distribution

- Temperature
- Ion mobility
- Ion mass

Wiedensohler approximation of Fuchs' (Implemented in SMPS[™] software)

- Ion mobility measured (radioactive source)
- Ion mass fitted result (Hussin et al. 1983)

Our calculations

- Ion mobility measured
- Ion mass calculated from Kilpatrick (1972) relationship

Outline

- Motivation
- Background charge fraction

Experimental charging conditions

- Neutralizers
- Carrier gas
- Results
 - Size distributions
 - Ion mobility
 - Charged fraction
- Summary and conclusions

Experimental apparatus

Aerosol neutralizers

- TSI 3077 (2 mCi 85 Kr with est. current activity = 0.84 mCi)
- TSI 3077A (10 mCi 85 Kr with est. current activity = 8.3 mCi)
- MSP M1090 Electrical Ionizer (AC corona discharge)
- TSI 3087 Advanced Aerosol Neutralizer (soft X-ray)
- Neutralizing conditions
 - Dry nitrogen (N_2)
 - Humidified air (various H_2O)
 - Humidified air with 20 ppb sulfur dioxide (SO_2)

Outline

- Motivation
- Background charge fraction
- Experimental charging conditions
 - Neutralizers
 - Carrier gas

• Results

- Particle size distributions
- Ion mobility distributions
- Charged fraction
- Summary and conclusions

Apparatus – particle size distributions

Silver size distributions (high concentration)

Silver size distributions (high concentration)

Silver size distributions (low concentration)

Silver size distributions (low concentration)

Oil droplet size distributions

Oil droplet size distributions

Soot size distributions

MARC STETTLER, Jacob Swanson, Adam M Boies. 2012. Evaluation of Uncertainties in Aircraft Engine Soot Emissions Derived from Engine Smoke Number, 2012 AAAR conference

Soot size distributions

MARC STETTLER, Jacob Swanson, Adam M Boies. 2012. Evaluation of Uncertainties in Aircraft Engine Soot Emissions Derived from Engine Smoke Number, 2012 AAAR conference

Apparatus – ion mobility distributions

Measured mobilities from radioactive source

Ion mobility depends on carrier gas properties

Measured ion mobilities for air, 50% RH

Effect of mobility on inverted size distribution

charge fraction approximation

30% concentration of particles

23

Apparatus – particle charged fractions

Charged fractions – theory and measurements

Measurements are compared with the Wiedensohler approximation and with calculations using Fuchs' theory (as adapted by Wiedensohler) with measured ion mobilities but calculated masses as input parameters

Summary and conclusions

- Measurements of size distributions of diverse aerosols revealed large differences, even for low particle concentrations
 - The incorrect +1 fraction is being used to invert data
- Why is this?
 - Measurements showed ion mobility (thus, charging) depends on:
 - Carrier gas composition
 - o Relative humidity
 - Neutralizer type
 - These parameters are different for every measurement

Summary and conclusions cont.

 "If ultimate absolute concentration accuracy is of utmost importance to a project, it is recommended that a CPC...be used as a concentration reference in addition to a [sizing spectrometer]."1

– YES!

 Hypothesis: Fuchs' theory alone not sufficient to predict differences in neutralizers, even if all else is known.

Thank you for your attention

Acknowledgements

- UK EPSRC
- MSP Corp and Copley Scientific for loan of M1090 Electrical Ionizer
- Dr Francisco Romay and Aaron Collins (MSP Corp) for technical assistance
- Cambustion Ltd. for loan of TSI 3077A

